Strengthening Geospatial-Based Maritime Surveillance: A Case Study of Adaptation to Extreme Weather in Critical Shipping Lanes
Main Article Content
Ida Bagus Putra Budiana
Anwar Kurniadi
Mitro Prohantoro
Rachmat Setiawibawa
The Malacca Strait is a vital maritime route that faces significant challenges from high traffic volumes and increasingly frequent extreme weather scenarios. These conditions pose serious risks to navigational safety, environmental integrity, and maritime operational security. This study aims to analyse the needs and components of a robust maritime surveillance architecture in the Malacca Strait, particularly in dealing with the impacts of extreme weather and climate change. Additionally, this research will explore the role of geospatial maritime intelligence in enhancing situational awareness and response to maritime incidents. The study findings indicate that a resilient surveillance architecture in the Malacca Strait requires the integration of advanced sensor systems (including multi-spectral radar and meteorological/oceanographic sensors), redundant communication networks, and AI/ML-based intelligent data processing. The adaptive capabilities of the system, including the use of UAVs and USVs, are critical to maintaining operational effectiveness in adverse weather conditions. Additionally, international cooperation and a robust policy framework, encompassing climate change adaptation and ethical considerations, are fundamental to the successful implementation and sustainability of surveillance systems. The Malacca Strait case study highlights specific vulnerabilities and proposes concrete solutions, illustrating a shift from a reactive to a proactive paradigm in maritime security. Building a resilient surveillance architecture in the Malacca Strait is a strategic imperative to safeguard global trade, regional stability, and environmental sustainability amid increasing climate uncertainty. Integrating cutting-edge technology with robust policies and international collaboration will ensure the safety and security of this vital waterway, making it a model for resilient maritime governance globally. A new aspect emphasised is the importance of adapting to climate change and the role of AI in predictive decision-making. This article presents a comprehensive and integrated approach to building a resilient maritime surveillance architecture, with a particular focus on the challenges of extreme weather in the Malacca Strait. Its originality lies in its emphasis on multi-sensor data fusion, the role of artificial intelligence in predictive analytics, and the integration of climate change adaptation into surveillance system design. Additionally, the article underscores the importance of a robust policy framework and international cooperation as the cornerstones of maritime surveillance resilience, offering a blueprint applicable to other critical maritime routes worldwide
Alves, T. M., Kokinou, E., Zodiatis, G., Radhakrishnan, H., Panagiotakis, C., & Lardner, R. (2016). Multidisciplinary oil spill modeling to protect coastal communities and the environment of the Eastern Mediterranean Sea. Scientific Reports, 6(1), 1–9. https://doi.org/10.1038/SREP36882;TECHMETA=119,134;SUBJMETA=172,2737,4081,704,829;KWRD=ENVIRONMENTAL+IMPACT,PHYSICAL+OCEANOGRAPHY
Ashraf, S. N., Manickam, S., Zia, S. S., Abro, A. A., Obaidat, M., Uddin, M., Abdelhaq, M., & Alsaqour, R. (2023). IoT empowered smart cybersecurity framework for intrusion detection in internet of drones. Scientific Reports, 13(1), 1–20. https://doi.org/10.1038/S41598-023-45065-8;SUBJMETA=166,639,705;KWRD=ENGINEERING,MATHEMATICS+AND+COMPUTING
Buzan, B. (2003). Security architecture in Asia: The interplay of regional and global levels. Pacific Review, 16(2), 143–173. https://doi.org/10.1080/0951274032000069660;CTYPE:STRING:JOURNAL
Chong, H. Y., & Lam, W. H. (2013). Ocean renewable energy in Malaysia: The potential of the Straits of Malacca. Renewable and Sustainable Energy Reviews, 23, 169–178. https://doi.org/10.1016/J.RSER.2013.02.021
Choucri, N., Madnick, S., & Ferwerda, J. (2014). Institutions for Cyber Security: International Responses and Global Imperatives. Information Technology for Development, 20(2), 96–121. https://doi.org/10.1080/02681102.2013.836699;WGROUP:STRING:PUBLICATION
Coorey, R. S. (2018). The Evolution of Geospatial Intelligence. Advances in Military Geosciences, 143–151. https://doi.org/10.1007/978-3-319-73408-8_10
Dritsas, E., & Trigka, M. (2025). Remote Sensing and Geospatial Analysis in the Big Data Era: A Survey. Remote Sensing 2025, Vol. 17, Page 550, 17(3), 550. https://doi.org/10.3390/RS17030550
El Mahrad, B., Newton, A., Icely, J. D., Kacimi, I., Abalansa, S., & Snoussi, M. (2020). Contribution of Remote Sensing Technologies to a Holistic Coastal and Marine Environmental Management Framework: A Review. Remote Sensing 2020, Vol. 12, Page 2313, 12(14), 2313. https://doi.org/10.3390/RS12142313
Farah, M. Ben, Ahmed, Y., Mahmoud, H., Shah, S. A., Al-kadri, M. O., Taramonli, S., Bellekens, X., Abozariba, R., Idrissi, M., & Aneiba, A. (2024). A survey on blockchain technology in the maritime industry: Challenges and future perspectives. Future Generation Computer Systems, 157, 618–637. https://doi.org/10.1016/J.FUTURE.2024.03.046
Fascista, A. (2022). Toward Integrated Large-Scale Environmental Monitoring Using WSN/UAV/Crowdsensing: A Review of Applications, Signal Processing, and Future Perspectives. Sensors 2022, Vol. 22, Page 1824, 22(5), 1824. https://doi.org/10.3390/S22051824
Germond, B. (2015). The geopolitical dimension of maritime security. Marine Policy, 54, 137–142. https://doi.org/10.1016/J.MARPOL.2014.12.013
Graham, S. (2012). When Life Itself is War: On the Urbanization of Military and Security Doctrine. International Journal of Urban and Regional Research, 36(1), 136–155. https://doi.org/10.1111/J.1468-2427.2011.01026.X
Green, C., Bilyanska, A., Bradley, M., Dinsdale, J., Hutt, L., Backhaus, T., Boons, F., Bott, D., Collins, C., Cornell, S. E., Craig, M., Depledge, M., Diderich, B., Fuller, R., Galloway, T. S., Hutchison, G. R., Ingrey, N., Johnson, A. C., Kupka, R., … Lynch, I. (2023). A Horizon Scan to Support Chemical Pollution–Related Policymaking for Sustainable and Climate‐Resilient Economies. Environmental Toxicology and Chemistry, 42(6), 1212–1228. https://doi.org/10.1002/ETC.5620
Han, H., Liu, Z., Li, J., & Zeng, Z. (2024). Challenges in remote sensing based climate and crop monitoring: navigating the complexities using AI. Journal of Cloud Computing, 13(1), 1–14. https://doi.org/10.1186/S13677-023-00583-8/FIGURES/3
Kamel Boulos, M. N., Resch, B., Crowley, D. N., Breslin, J. G., Sohn, G., Burtner, R., Pike, W. A., Jezierski, E., & Chuang, K. Y. S. (2011). Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: Trends, OGC standards and application examples. International Journal of Health Geographics, 10(1), 1–29. https://doi.org/10.1186/1476-072X-10-67/FIGURES/17
Kamran Dastjerdi, H., & Hosseini Nasrabady -, N. (2020). Role of Malacca Strait with a Geopolitical and Strategic Approach. Geopolitics Quarterly, 16(4), 264–287. https://journal.iag.ir/article_121694_en.html
Keller, G. H., & Richards, A. F. (1967). Sediments of the Malacca Strait, Southeast Asia. Journal of Sedimentary Research, 37(1), 102–127. https://doi.org/10.1306/74D7166D-2B21-11D7-8648000102C1865D
Lala, J. H., & Harper, R. E. (1994). Architectural Principles for Safety-Critical Real-Time Applications. Proceedings of the IEEE, 82(1), 25–40. https://doi.org/10.1109/5.259424
Li, M., Zhou, J., Chattopadhyay, S., & Goh, M. (2024). Maritime Cybersecurity: A Comprehensive Review. https://arxiv.org/pdf/2409.11417
Lu, Y., Adrados, J. S., Chand, S. S., & Wang, L. (2021). Humans Are Not Machines—Anthropocentric Human–Machine Symbiosis for Ultra-Flexible Smart Manufacturing. Engineering, 7(6), 734–737. https://doi.org/10.1016/J.ENG.2020.09.018
Marques, G., Pitarma, R., Garcia, N. M., & Pombo, N. (2019). Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review. Electronics 2019, Vol. 8, Page 1081, 8(10), 1081. https://doi.org/10.3390/ELECTRONICS8101081
Masria, A. (2024). Bridging coastal challenges: The role of remote sensing and future research. Regional Studies in Marine Science, 73, 103502. https://doi.org/10.1016/J.RSMA.2024.103502
Melet, A., Teatini, P., Le Cozannet, G., Jamet, C., Conversi, A., Benveniste, J., & Almar, R. (2020). Earth Observations for Monitoring Marine Coastal Hazards and Their Drivers. Surveys in Geophysics 2020 41:6, 41(6), 1489–1534. https://doi.org/10.1007/S10712-020-09594-5
Naderpour, M., Lu, J., & Zhang, G. (2014). An intelligent situation awareness support system for safety-critical environments. Decision Support Systems, 59(1), 325–340. https://doi.org/10.1016/J.DSS.2014.01.004
Perkovič, M. (2024). Advances in Navigability and Mooring. Journal of Marine Science and Engineering 2024, Vol. 12, Page 1601, 12(9), 1601. https://doi.org/10.3390/JMSE12091601
Petit, P. (2020). ‘Everywhere Surveillance’: Global Surveillance Regimes as Techno-Securitization. Science as Culture, 29(1), 30–56. https://doi.org/10.1080/09505431.2019.1586866;WGROUP:STRING:PUBLICATION
Pollard, J. A., Spencer, T., & Jude, S. (2018). Big Data Approaches for coastal flood risk assessment and emergency response. Wiley Interdisciplinary Reviews: Climate Change, 9(5), e543. https://doi.org/10.1002/WCC.543;CTYPE:STRING:JOURNAL
Purnaweni, H., Saputra, J., Roziqin, A., Kismartini, K., Djumiarti, T., & Seitz, T. (2022). Oil Spill Governance: Evidence from Bintan Island, Indonesia. Sustainability 2022, Vol. 14, Page 1603, 14(3), 1603. https://doi.org/10.3390/SU14031603
Sun, K., Zhu, Y., Pan, P., Hou, Z., Wang, D., Li, W., & Song, J. (2019). Geospatial data ontology: the semantic foundation of geospatial data integration and sharing. Big Earth Data, 3(3), 269–296. https://doi.org/10.1080/20964471.2019.1661662;CSUBTYPE:STRING:SPECIAL;PAGE:STRING:ARTICLE/CHAPTER
Suslu, B., Ali, F., & Jennions, I. K. (2023). Understanding the Role of Sensor Optimisation in Complex Systems. Sensors 2023, Vol. 23, Page 7819, 23(18), 7819. https://doi.org/10.3390/S23187819
Symes, S., Blanco-Davis, E., Graham, T., Wang, J., & Shaw, E. (2024). The survivability of autonomous vessels from cyber-attacks. Journal of Marine Engineering and Technology. https://doi.org/10.1080/20464177.2024.2428022;JOURNAL:JOURNAL:TMAR20;REQUESTEDJOURNAL:JOURNAL:TMAR20;WGROUP:STRING:PUBLICATION
Tabish, N., & Chaur-Luh, T. (2024). Maritime Autonomous Surface Ships: A Review of Cybersecurity Challenges, Countermeasures, and Future Perspectives. IEEE Access, 12, 17114–17136. https://doi.org/10.1109/ACCESS.2024.3357082
Ventura Jariod, E. (2019). Prospection and analysis of the new maritime trade nets of Asia in the Malacca Strait. https://upcommons.upc.edu/handle/2117/169660
Zhang, D., Chu, X., Liu, C., He, Z., Zhang, P., & Wu, W. (2024). A Review on Motion Prediction for Intelligent Ship Navigation. Journal of Marine Science and Engineering 2024, Vol. 12, Page 107, 12(1), 107. https://doi.org/10.3390/JMSE12010107
Zhou, X. (2024). Spatial risk assessment of maritime transportation in offshore waters of China using machine learning and geospatial big data. Ocean & Coastal Management, 247, 106934. https://doi.org/10.1016/J.OCECOAMAN.2023.106934