Efektivitas Penggunaan Air Nanobubble dalam Meningkatkan Pertumbuhan Tanaman: A Mini Review
Main Article Content
Pertanian merupakan sektor vital dalam ketahanan pangan global yang terus menghadapi berbagai tantangan, termasuk perubahan iklim, keterbatasan lahan, dan kebutuhan untuk meningkatkan produktivita. Dalam menghadapi tantangan tersebut, inovasi teknologi menjadi kunci utama untuk mengoptimalkan hasil pertanian. Jenis penelitian ini mengadopsi pendekatan studi kepustakaan yang mengedepankan proses pengumpulan data melalui penelaahan sumber-sumber literatur. Metodologi yang diterapkan dalam penelitian ini mengikuti beberapa tahapan sistematis, meliputi pengkajian literatur, penentuan judul, penyaringan abstrak, pemilihan naskah lengkap, dan penyusunan mini-review. Hasil dari penelitian ini mengemukakan bahwa Air nanobubble merupakan inovasi teknologi yang menghadirkan gelembung berukuran 1-100 nanometer dalam media udara. Teknologi ini memiliki keunggulan berupa muatan permukaan negatif yang tinggi, stabilitas jangka panjang hingga berminggu-minggu, dan kemampuan meningkatkan kadar oksigen terlarut secara signifikan. Karakteristik uniknya mencakup modifikasi struktur molekul udara yang menciptakan sifat hidrofobik-hidrofilik, serta distribusi gelembung yang lebih merata karena ukurannya yang nano mengurangi kecenderungan penggabungan atau pengapungan. Pelepasan oksigen yang bertahap mendukung proses biologis seperti pertumbuhan akar dan aktivitas mikroorganisme. Dengan berbagai keunggulan tersebut, air nanobubble memiliki potensi besar dalam penerapan pertanian modern, terutama dalam meningkatkan efisiensi penggunaan air dan nutrisi dibandingkan sistem irigasi konvensional.
Ali, B., & Dahlhaus, P. (2022). The role of FAIR data towards sustainable agricultural performance: a systematic literature review. Agriculture, 12(2), 309. https://doi.org/10.3390/agriculture12020309
Antara, Y., Razak, A., Umar, I., Gusman, M., & Efendi, N. (2023). Analysis of the Effect of Providing MNBs Organic Liquid Fertilizer on the Growth of Pueraria Javanica Plants in Coal Mining Areas. Jurnal Penelitian Pendidikan IPA, 9(11), 10317-10329.
Afiah, A., & Fevria, R. (2024). Pengaruh POC Teknologi Nano terhadap Pertumbuhan Bayam Merah (Amaranthus tricolor L.) yang Dibudidayakan secara Hidroponik. MASALIQ, 4(1), 332-343. https://doi.org/10.58578/masaliq.v4i1.2543
Babu, K. S., & Amamcharla, J. K. (2023). Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: A review and future perspective. Critical Reviews in Food Science and Nutrition, 63(28), 9262-9281. https://doi.org/10.1080/10408398.2022.2067119
Bian, Q., Dong, Z., Zhao, Y., Feng, Y., Fu, Y., Wang, Z., & Zhu, J. (2024). Phosphorus Supply Under Micro-Nano Bubble Water Drip Irrigation Enhances Maize Yield and Phosphorus Use Efficiency. Plants, 13(21), 3046. https://doi.org/10.3390/plants13213046
Baram, S., Weinstein, M., Evans, J. F., Berezkin, A., Sade, Y., Ben-Hur, M., ... & Mamane, H. (2022). Drip irrigation with nanobubble oxygenated treated wastewater improves soil aeration. Scientia Horticulturae, 291, 110550. https://doi.org/10.1016/j.scienta.2021.110550
Chen, W., Bastida, F., Liu, Y., Zhou, Y., He, J., Song, P., ... & Li, Y. (2023). Nanobubble oxygenated increases crop production via soil structure improvement: The perspective of microbially mediated effects. Agricultural Water Management, 282, 108263. https://doi.org/10.1016/j.agwat.2023.108263
Chaurasia, G. (2023). Nanobubbles: an emerging science in nanotechnology. MGM Journal of Medical Sciences, 10(2), 327-334. DOI: https://doi.org/10.4103/mgmj.MGMJ_59_23
Dahrazma, B., Naghedinia, A., Ghasemian Gorji, H., & Saghravani, S. F. (2019). Morphological and physiological responses of Cucumis sativus L. to water with micro-nanobubbles. Journal of Agricultural Science and Technology, 21(1), 181-192. http://jast.modares.ac.ir/article-23-15964-en.html
Faradila, N., Fevria, R., Vauzia, V., & Putri, I. L. E. . (2023). The Growth of the Red Lactus (Lactuca sativa L. var. Crispa) After Using Nano Technology Liquid Organic Fertilizer Hydroponically cultivated. Jurnal Biologi Tropis, 23(2), 68–74. https://doi.org/10.29303/jbt.v23i2.4719
Fevria, R., Razak, A., Syah, N., & Kamal, E. (2023). Application of Nanotechnology Liquid Organic Fertilizer in Sustainable Hydroponic Cultivation for Urban Food Security. Science & Technology Asia, 295-304. Retrieved from https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/250787
Huang, M., Nhung, N. T. H., Wu, Y., He, C., Wang, K., Yang, S., ... & Fujita, T. (2023). Different nanobubbles mitigate cadmium toxicity and accumulation of rice (Oryza sativa L.) seedlings in hydroponic cultures. Chemosphere, 312, 137250. https://doi.org/10.1016/j.chemosphere.2022.137250
Khan, P., Zhu, W., Huang, F., Gao, W., & Khan, N. A. (2020). Micro–nanobubble technology and water-related application. Water Supply, 20(6), 2021-2035. https://doi.org/10.2166/ws.2020.121
Kyzas, G. Z., Mitropoulos, A. C., & Matis, K. A. (2021). From microbubbles to nanobubbles: effect on flotation. Processes, 9(8), 1287. https://doi.org/10.3390/pr9081287
Khan, P., Wang, H., Gao, W., Huang, F., Khan, N. A., & Shakoor, N. (2022). Effects of micro-nano bubble with CO2 treated water on the growth of Amaranth green (Amaranthus viridis). Environmental Science and Pollution Research, 29(47), 72033-72044. https://doi.org/10.1007/s11356-022-20896-6
Marcelino, K. R., Ling, L., Wongkiew, S., Nhan, H. T., Surendra, K. C., Shitanaka, T., ... & Khanal, S. K. (2023). Nanobubble technology applications in environmental and agricultural systems: Opportunities and challenges. Critical Reviews in Environmental Science and Technology, 53(14), 1378-1403. https://doi.org/10.1080/10643389.2022.2136931
Putri, R., & Razak, A. (2024). Pengaruh Pupuk Organik Cair (POC) Teknologi Nano Dari Limbah Perut Ikan Tuna Mata Besar (Thunnus obesus) Terhadap Pertumbuhan Tanaman Cabai Merah (Capsicum annum L.). Jurnal Serambi Biologi, 9(2), 199-207. https://doi.org/10.24036/srmb.v9i2.353
Putri, F. S., Fevria, R., M, D., & Putri, I. L. E. (2023). The Effect of Nano Technology Liquid Organic Fertilizer on The Growth of Red Spinach (Amaranthus tricolor L.) Cultivated Hydroponic. Jurnal Biologi Tropis, 23(2), 491–497. https://doi.org/10.29303/jbt.v23i2.4872
Pal, P., & Anantharaman, H. (2022). CO2 nanobubbles utility for enhanced plant growth and productivity: Recent advances in agriculture. Journal of CO2 Utilization, 61, 102008. https://doi.org/10.1016/j.jcou.2022.102008
Paradhiba, A. M., Febriyanti, F., Rahmadania, E., Yanisa, F., Adelina, F. U., & Mukti, R. C. (2021, December). Pemanfaatan Teknologi Nanobubble untuk Produksi Anguilla sp pada Era Society 5.0. In Seminar Nasional Lahan Suboptimal (Vol. 9, No. 2021, pp. 435-444). https://conference.unsri.ac.id/index.php/lahansuboptimal/article/view/2178
Putra, S. E., Dewata, I., Barlian, E., Syah, N., Fatimah, S., Erianjoni, E., ... & Sholichin, M. (2023). Peran Kearifan Lokal Masyarakat Suku Mentawai dalam Upaya Mitigasi Bencana: Sistematik Review. Dinamika Lingkungan Indonesia, 10(2), 88-96. http://dx.doi.org/10.31258/dli.10.2.p.88-96
Pal, P., Joshi, A., & Anantharaman, H. (2022). Nanobubble ozonation for waterbody rejuvenation at different locations in India: A holistic and sustainable approach. Results in Engineering, 16, 100725. https://doi.org/10.1016/j.rineng.2022.100725
Roisiah, Q., & Fevria, R. (2024). The Effect of Nano Technology Liquid Organic Fertilizer on the Growth of Kailan (Brassica oleraceae var. alboglabra) Grown. Jurnal Serambi Biologi, 8(4), 485-491. https://doi.org/10.24036/srmb.v8i4.251
Raihansyah, M. Z., Kurniawan, A., Fauzi, A., Pamungkas, C. A., & Radianto, D. O. (2024). Membangun Definisi, Konsep, Manajemen Dan Pemahaman Baru Tentang Pertanian Maritim. Stratēgo: Jurnal Manajemen Modern, 6(2). https://journalpedia.com/1/index.php/jmm/article/view/1155
Roy, S., & Swamy, N. (2024). Modern Water Treatment Methods: Exploring Public Acceptance and Socio-economic Factors Influencing Their Implementation. In Water Management in Developing Countries and Sustainable Development (pp. 55-77). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8639-2_4
Syabana, I. A., Hartini, R. S., & Kurniasari, A. (2024, November). Greenhouse Rooftop Hydroponic Integrated with Ultra Fine Bubbles Technology in Culvating Curly Lettuce as an Effort to Realize Zero Hunger and Sustainable City. In NaCIA (National Conference on Innovative Agriculture) (pp. 47-53). https://doi.org/10.25047/nacia.v2i1.255
Singh, E., Kumar, A., & Lo, S. L. (2024). Advancing nanobubble technology for carbon-neutral water treatment and enhanced environmental sustainability. Environmental Research, 118980. https://doi.org/10.1016/j.envres.2024.118980
Tasya, N., & Silvia, V. (2024). Peran Inovasi Teknologi Dalam Meningkatkan Efisiensi Ekonomi Pertanian. JSSTEK-Jurnal Studi Sains dan Teknik, 2(1), 90-97. https://doi.org/10.3342/jsstek.v2i1.24
Tama, D. P., Zahra, V., Ikhsan, Z., Najmi, L., Nelly, N., & Lina, E. C. (2024). Sosialisasi Inovasi Insektisida Botani Menggunakan Teknologi Nanobubbles Sebagai Pengendali Hama Tanaman Hortikultura. Buletin Dharmas Andalas, 1(2), 59-63. https://doi.org/10.25077/bda.v1i2.17
Wu, Y., Lyu, T., Yue, B., Tonoli, E., Verderio, E. A., Ma, Y., & Pan, G. (2019). Enhancement of tomato plant growth and productivity in organic farming by agri-nanotechnology using nanobubble oxygation. Journal of agricultural and food chemistry, 67(39), 10823-10831. https://doi.org/10.1021/acs.jafc.9b04117
Wang, Y., Wang, S., Sun, J., Dai, H., Zhang, B., Xiang, W., ... & Zhang, W. (2021). Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production. Science of the Total Environment, 800, 149627. https://doi.org/10.1016/j.scitotenv.2021.149627
Wang, X., Li, P., Ning, R., Ratul, R., Zhang, X., & Ma, J. (2023). Mechanisms on stability of bulk nanobubble and relevant applications: A review. Journal of Cleaner Production, 139153. https://doi.org/10.1016/j.jclepro.2023.139153
Xue, S., Gao, J., Liu, C., Marhaba, T., & Zhang, W. (2023). Unveiling the potential of nanobubbles in water: Impacts on tomato's early growth and soil properties. Science of the Total Environment, 903, 166499. https://doi.org/10.1016/j.scitotenv.2023.166499
Yan, D., Xue, S., Zhang, Z., Xu, G., Zhang, Y., Gao, J., & Zhang, W. (2023). Air nanobubble water improves plant uptake and tolerance toward cadmium in phytoremediation. Environmental Pollution, 337, 122577. https://doi.org/10.1016/j.envpol.2023.122577
Zhao, L., Teng, M., Zhou, L., Li, Y., Sun, J., Zhang, Z., & Wu, F. (2023). Hydrogen nanobubble water: a good assistant for improving the water environment and agricultural production. Journal of Agricultural and Food Chemistry, 71(33), 12369-12371. https://doi.org/10.1021/acs.jafc.3c04582
Zhou, Y., Zhou, B., Xu, F., Muhammad, T., & Li, Y. (2019). Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation. Agricultural Water Management, 223, 105713. https://doi.org/10.1016/j.agwat.2019.105713
Zhang, F., Li, S., Wang, L., & Li, X. (2024). An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation. International Journal of Molecular Sciences, 25(3), 1896. https://doi.org/10.3390/ijms25031896